CD Laboratory for Enhanced Braking Behaviour of Railway Vehicles

Laub bedeckte Schienen und schlechte Witterung stellen hohe Ansprüche an das Bremssystem von Schienenfahrzeugen. Einflüsse von Verunreinigungen auf übertragbare Bremskräfte zu verstehen ist ein Ziel des Labors.
Beispielhaftes Ergebnis einer magneto-statischen Simulation mit dargestellter magnetischer Flussdichte. Zentraler Forschungsschwerpunkt des Labors ist die mathematische Modellierung des Kontakts zwischen Bremse und Schiene, welcher magnetische Wechselwirkung und Reibung umfasst.

The low rolling resistance of the steel-steel pairing of wheel and rail makes rail vehicles energy-efficient and environmentally friendly. One disadvantage of this contact is the low transmittable forces. In conjunction with high vehicle masses, this can lead to low maximum acceleration and long braking distances. In emergency situations, brakes are therefore used that work independently of the wheel-rail contact, such as magnetic rail brakes, or devices are added that increase the coefficient of friction between the wheel and rail, such as sanding systems.

 

This CD Laboratory researches the fundamentals of contact between the magnetic rail brake and the rail, taking into account the sand introduced, possible contamination and wetness. This makes it possible to answer questions about increasing the coefficient of friction by conditioning and cleaning the rail using sand and magnetic rail brakes. These investigations form the basis for improving the global braking behaviour, which is made up of the individual braking systems and their interactions. Furthermore, the fundamentals of the dynamic behaviour of the magnetic rail brake during braking are being researched, taking into account rail junctions such as switches or crossings. These principles form the basis for weight savings and for improving the service life of brakes and rail infrastructure, thus contributing to the reduction of energy and material costs.

The main focus of research is the mathematical modelling of the complex contact between the magnetic rail brake and the rail due to the rail geometry, contamination and variable speed. By simulating this contact, the underlying tribological and electromagnetic effects are investigated and key factors influencing the braking force are identified. Accompanying tests on test benches and on the real vehicle are used to derive corresponding models and validate the findings from the calculations. Building on this, the dynamic behaviour and interactions between friction, electromagnetism and structural dynamics of the magnetic track brake are investigated.

The improved understanding of the underlying physical effects and their impact on braking behaviour should serve as a basis for the development of future magnetic rail brakes and sanding systems and the optimum combination of all braking systems. Technical developments from related areas of application will also be supported due to the fundamental nature of the research carried out.

Sandung zur Reibwertsteigerung im Rad-Schiene-Kontakt. Das verbesserte Verständnis der zugrundeliegenden physikalischen Effekte und deren Auswirkung auf das Bremsverhalten soll als Basis für die Entwicklung zukünftiger Komponenten dienen.
Prüfstandversuch einer Magnetschienenbremse am Schwingtisch. Begleitende Versuche an Prüfständen und am realen Fahrzeug dienen dazu, mathematische Modelle abzuleiten und die Erkenntnisse aus den Berechnungen zu validieren.

Christian Doppler Forschungsgesellschaft

Boltzmanngasse 20/1/3 | 1090 Wien | Tel: +43 1 5042205 | Fax: +43 1 5042205-20 | office@cdg.ac.at

© 2020 Christian Doppler Forschungsgesellschaft